定积分的换元法
第一类换元法
$$
\begin{aligned}
&第一类换元法的一般形式:\\
& \quad \quad \int_a^b f[g(x)]g^\prime(x)dx \overset{令g(x)=\mu}{=} \int_{g(a)}^{g(b)} f(\mu) d\mu = \int_{g(a)}^{g(b)} f(x) dx\\
\\
&第一类换元法的变体1:\\
& \quad \quad \int_a^{\phi(x)} f[g(t)]g^\prime(t)dt \overset{令g(t)=\mu}{=} \int_{g(a)}^{g[\phi(x)]} f(\mu) d\mu\\
\\
&第一类换元法的变体2:\\
& \quad \quad \int_{\phi(x)}^{\psi(x)} f[g(t)]g^\prime(t)dt \overset{令g(t)=\mu}{=} \int_{g[\phi(x)]}^{g[\psi(x)]} f(\mu) d\mu\\
\end{aligned}
$$
上述式子成立,是因为:
$$
\begin{aligned}
&设F(x)=\int f(x)dx,则F^\prime(x)= f(x),F^\prime[g(x)] = f[g(x)]g^\prime(x)\\
&所以,\int_a^b f[g(x)]g^\prime(x)dx = F[g(b)]-F[g(a)] = \int_{g(a)}^{g(b)} f(x)dx\\
\end{aligned}
$$
第二类换元法
$$
\begin{aligned}
&第二类换元法的一般形式:\\
& \quad \quad \int_a^b f(x)dx \overset{令x=g(\mu)}{=} \int_{g^{-1}(a)}^{g^{-1}(b)} f[g(\mu)]g^\prime(\mu)d\mu\\
\\
&第二类换元法的变体1:\\
& \quad \quad \int_a^{\phi(x)} f(t)dt \overset{令t=g(\mu)}{=}\int_{g^{-1}(a)}^{g^{-1}(\phi(x))} f[g(\mu)]g^\prime(\mu)d\mu\\
\\
&第二类换元法的变体2:\\
& \quad \quad \int_{\phi(x)}^{\psi(x)} f(t)dt \overset{令t=g(\mu)}{=}\int_{g^{-1}[\phi(x)]}^{g^{-1}[\psi(x)]} f[g(\mu)]g^\prime(\mu)d\mu\\
\end{aligned}\\
$$
上述式子成立,是因为:
$$
\begin{aligned}
&设F(x)=\int f(x)dx,则F^\prime(x)= f(x),F^\prime[g(x)] = f[g(x)]g^\prime(x)\\
&所以,\int_{g^{-1}(a)}^{g^{-1}(b)} f[g(\mu)]g^\prime(\mu) d\mu = F[g[g^{-1}(b)]] - F[g[g^{-1}(a)]] = F(b)-F(a) = \int_a^b f(x)dx\\
\end{aligned}
$$
定积分的分部积分法公式
$$
\begin{aligned}
\int_a^b \mu\nu^\prime dx = [\mu\nu]^b_a - \int_a^b \nu\mu^\prime dx
\end{aligned}
$$
参考教材章节
- 5.3 定积分的换元法和分部积分法
课后作业
- 计算下列定积分
$$
\begin{aligned}
&(1). \int_0^\frac{\pi}{2} \sin\phi\cos^3\phi d\phi &&(2). \int_\frac{1}{\sqrt{2}}^1 \frac{\sqrt{1-x^2}}{x^2}dx\
&(3). \int_1^{e^2}\frac{dx}{x\sqrt{1+\ln x}} &&(4). \int_0^2 \frac{xdx}{x^2-2x+2}
\end{aligned}
$$
- 设$f(x)$在 $[a,b]$ 上连续,证明: $\int_a^b f(x)dx = \int_a^bf(a+b-x)dx$
- 若$f(t)$是连续的奇函数,证明$\int_0^x f(t)dt$是偶函数;若$f(t)$是连续的偶函数,证明$\int_0^x f(t)dt$是奇函数